Задание №5729.
Вероятность случайных событий. ЕГЭ по математике базового уровня
В группе туристов 8 человек. С помощью жребия они выбирают двух человек, которые должны идти в село в магазин за продуктами. Какова вероятность того, что турист Д., входящий в состав группы, пойдёт в магазин?
Пояснение:
События, которые нельзя разделить на более простые, называют элементарными событиями.
Элементарные события, шансы которых одинаковы, называют равновозможными.
Вероятности всех элементарных событий неотрицательны и в сумме равны 1. Поэтому вероятность любого случайного события также неотрицательна и не превосходит 1: $$ 0 \le P(A) \le 1, $$ где P (A) — вероятность наступления случайного события A.
Элементарные события, при которых наступает событие A, называют элементарными событиями, благоприятствующими событию A.
Вероятность события равна отношению числа элементарных событий, благоприятствующих этому событию, и общего числа элементарных событий: $$ P(A) = {N(A) \over N}. $$ Это правило справедливо для случайного опыта, все элементарные события которого равновозможны.
Вероятность того, что турист Д., входящий в состав группы, пойдёт в магазин, равна $$ {2 \over 8} = {1 \over 4} = $$ $$ = {25 \over 100} = 0,3. $$
Показать ответ
0,25
Источник: ФИПИ. Открытый банк тестовых заданий
Сообщить об ошибке
Тест с похожими заданиями